

# ФЛАГМАНСКИЙ АССОРТИМЕНТ 25\_1



#### О КОМПАНИИ

Microbor – это российский производитель металлорежущего инструмента и оснастки. Мы помогаем внедрить наиболее эффективные решения по металлообработке.

Наше производство и основной склад находятся на территории ОЭЗ «Технополис Москва», что обеспечивает логистические и коммуникационные преимущества. Московское производство доступно к посещению клиентами.

#### КАК МЫ РАБОТАЕМ



Анализируем существующую технологию и определяем, за счет чего можно повысить производительность на предприятии



Делаем реальный расчет, как предлагаемые технические решения повлияют на экономическую эффективность



Проводим испытания, при необходимости корректируем режимы под конкретные условия обработки для достижения максимальной эффективности



Показываем реальную эффективность обработки. Формируем склад под нужды клиента для максимально оперативной доставки партий инструмента



Готово. Теперь вы тратите меньше ресурсов на обработку детали и зарабатываете больше



### Фрезерные пластины для черновой или получистовой обработки плоскостей

Сорт VP201, комбинация среднезернистого твердосплавного сорта и износостойкого покрытия на базе AlTiN, позволяет использовать данную пластину для черновых и получистовых операций фрезерования как простых конструкционных сталей, так и нержавеющих сталей и чугунов.

#### Геометрия PNUM

|          | F                |          | Vc, м/мин |          | Fz,       |             |
|----------|------------------|----------|-----------|----------|-----------|-------------|
| Пластина | Геометрия        | P        | M         | K        | Ар, мм    | ,<br>мм∕зуб |
|          | PNUM110408 VP201 | 40 - 150 | 40 - 100  | 60 - 200 | 1,0 – 7,0 | 0,1 - 0,5   |



### Самые популярные фрезерные пластины в РФ

Сорт МК330, смесь твердосплавного сорта группы P20 и износостойкого покрытия на базе AlTiN, позволяет использовать данную пластину для большинства операций фрезерования как простых конструкционных сталей, так и нержавеющих сталей и чугунов.



#### Геометрия АРКТ

| Пластина  | Fooyerpus                |        | Vc, м/мин | A.S. 1111 | Fz,    |            |
|-----------|--------------------------|--------|-----------|-----------|--------|------------|
| тіластина | Геометрия                | Р      | M         | K         | Ар, мм | мм/зуб<br> |
| 6         | APKT160408 PDER-XM MK330 | 90-250 | 60-200    | 100-300   | 15,2   | 0,1-0,35   |
|           | APKT100305 PDTR-XM MK330 | 90-250 | 60-200    | 100-300   | 9,2    | 0,1-0,25   |

Доступные корпуса



АРКТ10.... Концевые Ø10-Ø40

АРКТ16.... Концевые Ø25-Ø40



APKT10....

**Торцевые** Ø40-Ø100

APKT16....

Торцевые Ø40-Ø200



### Самые популярные фрезерные пластины в РФ

Сорт МК330, смесь твердосплавного сорта группы P20 и износостойкого покрытия на базе AlTiN, позволяет использовать данную пластину для большинства операций фрезерования как простых конструкционных сталей, так и нержавеющих сталей и чугунов.



Сорт MK325, смесь твердосплавного сорта группы M20 и износостойкого покрытия на базе AlCrN, позволяет использовать данную пластину для обработки сложных нержавеющих сталей, титановых и жаропрочных сплавов на основе никеля.

#### Геометрия LNMU

|          | Focustous      |        | Vc, м  | /мин    |        | 5 / 4  |            |
|----------|----------------|--------|--------|---------|--------|--------|------------|
| Пластина | Геометрия      | Р      | M      | K       | S      | Ар, мм | Fz, мм/зуб |
| O        | LNMU0303 MK330 | 90-250 | 60-200 | 100-300 | -      | 1,0    | 0,1-1,3    |
|          | LNMU0303 MK325 | 90-250 | 60-200 | 100-300 | 20-100 | 1,0    | 0,1-1,3    |

Доступные корпуса



LNMU03.... Концевые Ø16-Ø33



LNMU03.... Торцевые Ø40-Ø63



### Обработка плоскостей и профильная обработка

Сорт МК330, смесь твердосплавного сорта группы P20 и износостойкого покрытия на базе AlTiN, позволяет использовать данную пластину для большинства операций фрезерования как простых конструкционных сталей, так и нержавеющих сталей и чугунов.



#### Геометрия RPMT

| Постопиля | Faculty             |        | Vc, м/мин | A       | Fz.    |               |
|-----------|---------------------|--------|-----------|---------|--------|---------------|
| Пластина  | Геометрия           | P      | M         | K       | Ар, мм | Fz,<br>мм/зуб |
| O         | RPMT08T2MO-XM MK330 | 90-250 | 60-200    | 100-300 | 3,5    | 0,08-0,3      |
|           | RPMT10T3MO-XM MK330 | 90-250 | 60-200    | 100-300 | 4,5    | 0,15-0,3      |
| 0         | RPMT1204MO-XM MK330 | 90-250 | 60-200    | 100-300 | 5,5    | 0,15-0,3      |

Доступные корпуса



RРМТ08.... Концевые Ø20-Ø25 RРМТ10.... Концевые Ø25-Ø32 RРМТ12.... Концевые Ø32-Ø32



RPMT12.... Торцевые Ø50-Ø80



## СВЕРЛИЛЬНЫЕ ПЛАСТИНЫ

### Самые популярные пластины для сверл

Сорт МК330, смесь твердосплавного сорта группы P20 и износостойкого покрытия на базе AlTiN, позволяет использовать данную пластину для сверления как простых конструкционных сталей, так и нержавеющих сталей и чугунов.

#### Геометрия SPMG

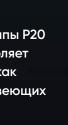
|          |                     |        | F: //  |         |           |
|----------|---------------------|--------|--------|---------|-----------|
| Пластина | Геометрия           | P      | M      | К       | Fn, mm/o6 |
|          | SPMG060204-XM MK330 | 90-250 | 60-200 | 100-300 | 0,08-0,2  |
| -        | SPMG07T308-XM MK330 | 90-250 | 60-200 | 100-300 | 0,08-0,22 |
| 0        | SPMG090408-XM MK330 | 90-250 | 60-200 | 100-300 | 0,08-0,22 |
| -        | SPMG110408-XM MK330 | 90-250 | 60-200 | 100-300 | 0,08-0,25 |
|          | SPMG140512-XM MK330 | 90-250 | 60-200 | 100-300 | 0,1-0,25  |

Доступные корпуса



- SPMG0502.. Ø12,5-Ø15,5
- SPMG0602.. Ø15,5-Ø21,5
- SPMG07T3.. Ø22,0-Ø27,5




- SPMG0904.. Ø28,0-Ø33,5
- SPMG1104.. Ø34,0-Ø41,5
- SPMG1405.. Ø42,0-Ø52,0



#### СВЕРЛИЛЬНЫЕ ПЛАСТИНЫ

#### Самые популярные пластины для сверл

Сорт МК330, смесь твердосплавного сорта группы Р20 и износостойкого покрытия на базе AlTiN, позволяет использовать данную пластину для сверления как простых конструкционных сталей, так и нержавеющих сталей и чугунов.





|          |                     |        | - / ·  |         |           |
|----------|---------------------|--------|--------|---------|-----------|
| Пластина | Геометрия           | Р      | M      | К       | Fn, мм/об |
|          | WCMX030208-XM MK330 | 90-250 | 60-200 | 100-300 | 0,05-0,09 |
|          | WCMX040208-XM MK330 | 90-250 | 60-200 | 100-300 | 0,05-0,16 |
|          | WCMX050308-XM MK330 | 90-250 | 60-200 | 100-300 | 0,06-0,13 |
|          | WCMX06T308-XM MK330 | 90-250 | 60-200 | 100-300 | 0,07-0,16 |
|          | WCMX080412-XM MK330 | 90-250 | 60-200 | 100-300 | 0,09-0,2  |

Доступные корпуса



- WCMX0302.. Ø16,0-Ø19,5
- WCMX06T3.. Ø30,0-Ø44,5
- WCMX0402.. Ø20,0-Ø23,5
- WCMX0804.. Ø45,0-Ø60,0
- WCMX0503.. Ø24,0-Ø29,5



Универсальные позитивные геометрии пластин для токарной обработки

Комбинация стружколома ХМС и сорта MR022 с износостойким покрытием на основе AlTiN обеспечивает универсальную обработку материалов групп P, M, K, S.





#### Геометрия ССМТ

| _                    | P         |              |                | M         |              | K              |           |              | S              |           |              |                |
|----------------------|-----------|--------------|----------------|-----------|--------------|----------------|-----------|--------------|----------------|-----------|--------------|----------------|
| Геометрия            | Ар, мм    | Vc,<br>м∕мин | Fn,<br>мм/об   | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об   | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об   | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об   |
| CCMT060202-XMC MR022 | 0,3 - 2,5 |              |                | 0,3 - 2,5 |              |                | 0,3 - 2,5 |              |                | 0,3 - 2,5 |              |                |
| CCMT060204-XMC MR022 | 0,5 - 2,5 |              |                | 0,5 - 2,5 |              |                | 0,5 - 2,5 |              |                | 0,5 - 2,5 |              |                |
| CCMT060208-XMC MR022 | 0,9 - 2,5 |              |                | 0,9 - 2,5 |              |                | 0,9 - 2,5 |              |                | 0,9 - 2,5 |              |                |
| CCMT09T304-XMC MR022 | 0,5 - 3,5 | 120 -<br>300 | 0,12 -<br>0,35 | 0,5 - 3,0 | 90 -<br>200  | 0,15 -<br>0,28 | 0,5 - 3,0 | 30 - 140     | 0,15 -<br>0,28 | 0,5 - 3,0 | 30 - 160     | 0,15 -<br>0,28 |
| CCMT09T308-XMC MR022 | 0,9 - 3,5 |              |                | 0,9 - 3,0 |              |                | 0,9 - 3,0 |              |                | 0,9 - 3,0 |              |                |
| CCMT120404-XMC MR022 | 0,5 - 4,0 |              |                | 0,5 - 3,0 |              |                | 0,5 - 3,0 |              |                | 0,5 - 3,0 |              |                |
| CCMT120408-XMC MR022 | 0,9 - 4,0 |              |                | 0,9 - 3,0 |              |                | 0,9 - 3,0 |              |                | 0,9 - 3,0 |              |                |



Универсальные позитивные геометрии пластин для токарной обработки

Комбинация стружколома ХМС и сорта MR022 с износостойким покрытием на основе AlTiN обеспечивает универсальную обработку материалов групп P, M, K, S.





#### Геометрия ТСМТ

| _                    |           | P            |              |           | M            |              | K         |              |              | S         |              |              |
|----------------------|-----------|--------------|--------------|-----------|--------------|--------------|-----------|--------------|--------------|-----------|--------------|--------------|
| Геометрия            | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м∕мин | Fn,<br>мм/об |
|                      |           |              |              |           |              |              |           |              |              |           |              |              |
| TCMT090204-XMC MR022 | 0,5 - 1,8 |              |              | 0,5 - 1,8 |              |              | 0,5 - 1,8 |              |              | 0,5 - 1,8 |              |              |
| TCMT090208-XMC MR022 | 0,9 - 1,8 |              |              | 0,9 - 1,8 |              |              | 0,9 - 1,8 |              |              | 0,9 - 1,8 |              |              |
| TCMT110204-XMC MR022 | 0,5 - 2,5 | 120 -        | - 0,12 -     | 0,5 - 2,5 | 0,5 - 2,5    |              | 0,5 - 2,5 | 30 - 140     | 0,15 -       | 0,5 - 2,5 | 30 - 160     | 0,15 -       |
| TCMT110208-XMC MR022 | 0,9 - 2,5 | 300          | 0,35         | 0,9 - 2,5 | 200          | 0,28         | 0,9 - 2,5 | 30 - 140     | 0,28         | 0,9 - 2,5 | 30 - 100     | 0,28         |
| TCMT16T304-XMC MR022 | 0,5 - 4,0 |              |              | 0,5 - 3,0 |              |              | 0,5 - 3,0 |              |              | 0,5 - 3,0 |              |              |
| TCMT16T308-XMC MR022 | 0,9 - 4,0 |              |              | 0,9 - 3,0 |              |              | 0,9 - 3,0 |              |              | 0,9 - 3,0 |              |              |



Универсальные позитивные геометрии пластин для токарной обработки

Комбинация стружколома ХМС и сорта MR022 с износостойким покрытием на основе AlTiN обеспечивает универсальную обработку материалов групп P, M, K, S.





#### Геометрия DCMT

| P         |                                     |                                                               | M                                                                        |                                                                                               |                                                                                                        | K                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ар, мм    | Vс,<br>м∕мин                        | Fn,<br>мм/об                                                  | Ар, мм                                                                   | Vc,<br>м∕мин                                                                                  | Fn,<br>мм/об                                                                                           | Ар, мм                                                                                                              | Vc,<br>м/мин                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fn,<br>мм/об                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ар, мм                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vc,<br>м/мин                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fn,<br>мм/об                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                     |                                                               |                                                                          |                                                                                               |                                                                                                        |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0,5 - 2,0 |                                     |                                                               | 0,5 - 2,0                                                                |                                                                                               |                                                                                                        | 0,5 - 2,0                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,5 - 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 00.00     |                                     |                                                               | 0,9 - 2,0                                                                |                                                                                               | 00 00                                                                                                  |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 - 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0,9 - 2,0 | 120 -                               | 0,12 -                                                        |                                                                          | 0,15 -                                                                                        | 0,9 - 2,0                                                                                              | 30 - 140                                                                                                            | 0,15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,9 - 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0,5 - 3,0 | 300                                 | 0,35                                                          | 0,5 - 3,0                                                                | 200                                                                                           | 0,28                                                                                                   | 0,5 - 3,0                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,5 - 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                     |                                                               |                                                                          |                                                                                               |                                                                                                        |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0,9 - 3,0 |                                     |                                                               | 0,9 - 3,0                                                                |                                                                                               |                                                                                                        | 0,9 - 3,0                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,9 - 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 0,5 - 2,0<br>0,9 - 2,0<br>0,5 - 3,0 | Ар, мм Vc,<br>м/мин<br>0,5 - 2,0<br>0,9 - 2,0<br>120 -<br>300 | Ар, мм Vc, Fn, мм/об  0,5 - 2,0  0,9 - 2,0  120 - 0,12 - 0,35  0,5 - 3,0 | Ар, мм Vc, Fn, м/мин мм/об Ар, мм 0,5 - 2,0 0,5 - 2,0 0,9 - 2,0 0,9 - 2,0 0,5 - 3,0 0,5 - 3,0 | Ар, мм Vc, м/мин Mм/об Ар, мм Vc, м/мин  0,5 - 2,0  0,9 - 2,0  120 - 0,12 - 0,35  0,5 - 3,0  0,5 - 3,0 | Ар, мм Vc, м/мин мм/об Ар, мм Vc, м/мин мм/об О,5 - 2,0 О,5 - 2,0 О,5 - 2,0 О,5 - 3,0 О,5 - 3,0 О,5 - 3,0 О,5 - 3,0 | Ар, мм         Vc, м/мин         Fn, мм/об         Ар, мм         Vc, м/мин         Fn, мм/об         Ар, мм         Vc, м/мин         Fn, мм/об         Ар, мм           0,5 - 2,0         0,5 - 2,0         0,5 - 2,0         0,5 - 2,0         0,5 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0 | Ар, мм         Vc, м/мин         Fn, мм/об         Ар, мм         Vc, м/мин         Fn, мм/об         Ар, мм         Vc, м/мин         Fn, мм/об         Ар, мм         Vc, м/мин           0,5 - 2,0         0,5 - 2,0         0,5 - 2,0         0,5 - 2,0         0,5 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,9 - 2,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0         0,5 - 3,0 | Ар, мм Vc, км/мин мм/об Ар, мм Vc, км/мин Миноб Ар, мм Vc, км/мин Mиноб Ap, мм Vc, км/мин Minoб Ap, мм M | Ар, мм         Vc, м/мин         Fn, мм/об         Ap, мм         Vc, м/мин         Fn, мм/об         Ap, мм         Vc, мм/об         Ap, мм         < | Ар, мм         Vc, м/мин         Fn, м/мин         Ap, мм         Vc, м/мин         Ap, мм         Ap, мм         Vc, м/мин         Ap, мм         Ap, мм         Vc, м/м         Ap, мм         Ap, мм |



Универсальные позитивные геометрии пластин для токарной обработки

Комбинация стружколома ХМС и сорта MR022 с износостойким покрытием на основе AlTiN обеспечивает универсальную обработку материалов групп P, M, K, S.





#### Геометрия SCMT

| _                    | P         |              | М            |           |              | K            |           |              | S            |           |              |              |        |
|----------------------|-----------|--------------|--------------|-----------|--------------|--------------|-----------|--------------|--------------|-----------|--------------|--------------|--------|
| Геометрия            | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м∕мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об |        |
|                      |           |              |              |           |              |              |           |              |              |           |              |              |        |
| SCMT09T304-XMC MR022 | 0,5 - 2,5 |              |              | 0,5 - 2,5 |              |              | 0,5 - 2,5 |              |              | 0,5 - 2,5 |              |              |        |
| SCMT09T308-XMC MR022 | 0,9 - 2,5 |              |              |           | 0,9 - 2,5    |              |           | 0,9 - 2,5    |              |           | 0,9 - 2,5    |              |        |
|                      |           | 120 -        | 0,12 -       |           |              | 90 -         | 0,15 -    |              | 30 - 140     | 0,15 -    |              | 30 - 160     | 0,15 - |
| SCMT120404-XMC MR022 | 0,5 - 3,0 | 300          | 0,35         | 0,5 - 3,0 | 200          | 0,28         | 0,5 - 3,0 |              | 0,28         | 0,5 - 3,0 |              | 0,28         |        |
| SCMT120408-XMC MR022 | 0,9 - 3,0 |              |              | 0,9 - 3,0 |              |              | 0,9 - 3,0 |              |              | 0,9 - 3,0 |              |              |        |
|                      |           |              |              |           |              |              |           |              |              |           |              |              |        |



Универсальные позитивные геометрии пластин для токарной обработки

Комбинация стружколома ХМС и сорта MR022 с износостойким покрытием на основе AlTiN обеспечивает универсальную обработку материалов групп P, M, K, S.





#### Геометрия VBMT

|                      | P         |              | M                     |           |              | K            |           |              | S              |           |              |                |
|----------------------|-----------|--------------|-----------------------|-----------|--------------|--------------|-----------|--------------|----------------|-----------|--------------|----------------|
| Геометрия            | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об          | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об   | Ар, мм    | Vc,<br>м/мин | Fn,<br>мм/об   |
| VBMT110304-XMC MR022 | 0,5 - 3,0 |              |                       | 0,5 - 3,0 |              |              | 0,5 - 3,0 |              |                | 0,5 - 3,0 |              |                |
|                      |           |              | 120 - 0,12 - 300 0.35 |           |              |              |           |              | 0,15 -<br>0,28 |           |              |                |
| VBMT110308-XMC MR022 | 0,9 - 3,0 |              |                       | 0,9 - 3,0 | 90 -         |              | 0,9 - 3,0 | 30 - 140     |                | 0,9 - 3,0 | 30 - 160     | 0,15 -<br>0,28 |
| VBMT160404-XMC MR022 | 0,5 - 4,0 | 300          | 0,35                  | 0,5 - 3,0 | 200          | 0,28         | 0,5 - 3,0 |              | 0,28           | 0,5 - 3,0 |              | 0,28           |
| VBMT160408-XMC MR022 | 0,9 - 4,0 |              |                       | 0,9 - 3,0 |              |              | 0,9 - 3,0 |              |                | 0,9 - 3,0 |              |                |



Самая популярная пластина для обработки нержавеющих сталей и жаропрочных сплавов

Стружколом MSD предназначен для получистовой токарной обработки. Острая режущая кромка позволяет обрабатывать материалы с высокой вязкостью, а сорт MR331 обеспечивает высокую стойкость при обработке жаропрочных сплавов.



|          |                      | Vc, M  | /мин   |         | - / /     |
|----------|----------------------|--------|--------|---------|-----------|
| Пластина | Геометрия            | M      |        | Ар, мм  | Fn, мм/об |
|          | CNMG120408-MSD MR331 | 60-180 | 30-160 | 0,9-4,0 | 0,1-0,35  |



Самые актуальные новости на нашей странице ВКонтакте



+7 (495) 984 35 75 info@microbor.com www.microbor.com

ОЭЗ "Технополис Москва", 109316, Москва, Волгоградский пр., д. 42, к 5